# Import Azure OpenAI
from langchain_openai import AzureChatOpenAI
from dotenv import load_dotenv
from os import getenv
load_dotenv()
llm = AzureChatOpenAI(deployment_name=getenv("MODEL"), max_tokens=4000)
Now define a function to invoke the LLM similar to how we did for embeddings
# Submits a series of prompts to OpenAI model
def api(prompts):
response = llm.batch(prompts)
return [item.content for item in response]
Now we pass the api
function to your workflow
from txtai import Embeddings, RAG
# Create RAG instance
rag = RAG(embeddings, api)